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Abstract

We propose "Prediction by Imagination", a method for action-based observation
prediction for self-driving cars. Our prediction model has three different modules.
Two rule-based image processing modules and one prediction module. Only the
prediction module has trainable parameters and the two rule-based modules help
the prediction module learn a simpler task, i.e a prediction task in which only
the position of the moving objects change from one frame to the next one and
the rest remains the same. The prediction module does not take actions directly
and learn the interactions between the cars during training. Therefore, it does not
just learn how to react to our own actions but learns the dynamics of the whole
traffic. We train our model in the framework of conditional varitional autoencoders
(CVAEs) to maximize the evidence lower bound (ELBO) of the log-likelihood of a
conditional observation distribution.

1 Introduction

Action-based prediction models have applications in different areas of machine learning [15, 10, 1].
Action-based prediction has two major benefits. First, an action-based prediction model can be used
for training a planning model or a reinforcement learning (RL) agent, either end-to-end [17] or model
by model [7]. Secondly, by changing the actions we can observe how the environment changes and
generate new scenarios, without a real and potentially costly interaction with the environment. Both
of these important downstream tasks heavily rely on the quality of the observations predicted by the
model. In the case of autonomous vehicles this issue becomes even more important because of two
main reasons: 1) taking safe actions is crucial in the case of self-driving cars. 2) Collecting data in
which extreme scenarios, e.g. hard breaks or sharp change of steering wheel angel, is a hard task as
these situations do not happen often in a real world. Therefore using a model that can handle such
extreme actions and produce valid prediction will be helpful. An important reason that most of the
current action-based prediction models cannot handle these type of actions is that the observation to
be predicted changes almost entirely compared to the previous observations based on actions. Here
we want to build a model that does not posses this drawback, i.e. at each step we want our prediction
to have minimal changes compared to the input of the model.

Authors in [12] proposed a model for multi-step prediction of occupancy grid maps (OGM) where all
the frames from past and future are mapped to a reference frame in which the ego vehicle (the vehicle
for which we learn the prediction or do planning) is freezed and just moving objects in the scene
change their location. There are two major differences here. First of all, unlike [12] we consider
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actions in our prediction. Therefore we can change the prediction based on changing the actions.
Secondly, we do not freeze the ego car. Therefore, invalid scenarios, e.g. a car comes from behind
and runs over our car, do not happen in our prediction.

Model-predictive policy with uncertainty regularization (MPUR) [7], is a state-of-the-art prediction
and planning model in this area. Although the model is successful in predicting the effect of
action within the range of training samples, in the case of extreme actions it fails to predict a valid
observation.

A large body of literature on prediction tasks in self-driving cars is dedicated to object tracking
[9, 6, 11, 4], which is a classical approach to tackle the problem of finding a model for decision
making for autonomous vehicles. More recently, multimodal object tracking has become a popular
topic in this area [5, 2, 16]. These methods are mostly based on generative models and variational
inference that find the most probable paths for the objects in the environment. However, all of these
methods need online object detection, which is computationally expensive and require labeled data.
Moreover, any error in object detection can affect the whole system and result in catastrophic failure.

Here we propose a model that works almost similar to driving behavior of humans. Given current
observation of the road and a history of the past observations, we as drivers decide to take an action.
But, before immediately applying that action we imagine how such an action will change our position
in the road and predict the reaction of other cars around us to such a change[3]. Here we also
introduce the same idea, i.e. we first imagine how the actions change the position of the ego car in an
image and then predict how the moving objects in the environment will react to it. In the next section
we explain the components of our model in more details.

2 Prediction by Imagination

The prediction task that we consider in this work is described as follows. We are given a set of
observations from the environment. Let’s denote the observation at time t by ot. The problem is to
predict the future k observations, ot+1:t+k, given the past observation o1:t and a series of actions
at:t+k−1. The observations include (a) A bird’s-eye view image in which the ego car has a fixed
position, in the form of an OGM. We denote the image at time t by it.(b) Position and velocity of
the car in each direction, which are denoted by pt and vt, respectively, and we refer them as the
measurements. These two parts of the observation are the same in nature, i.e. both are sensory data
from the vehicle. However, we are focused on learning a model that can predict the images, as the
position and velocity can be deterministically computed based on the actions, as described in the next
sections. This is why we call them with different names. The measurements are crucial for learning
the dynamic of the system as well as predicting the future frames.

2.1 Base model

Our model consists of five blocks. The main block is a prediction module, which is a conditional
observation prediction model in the framework of variational autoencoders (VAEs) [8]. There are
three rule-based image processing blocks, two of them before the prediction module preparing input
data, and the other rule-based module processes the output of the prediction module for the next time
steps. The rule-based modules are not trainable and only parameters of the prediction module are
learned. In this section we explain the structure and application of each of these modules in details.

2.1.1 Measurements estimator module
⌧t ⇥ |vt| ⇥�t

�pt = vt�t

pt+1 = pt + �pt

|vt+1| = ↵t�t + |vt|
�✓t = arctan(⌧t|vt|�t)

Figure 1: Computing the effect of actions on the future
position, velocity and change in the direction of the car
(∆θt). ∆t depends on the sample frequency.

The actions that we consider are two-
dimensional, which include acceleration, α,
and rotation of the steering wheel, τ , at =
[αt, τt]. Given these actions and measurements
at each time step, the measurements for the
next time step can be determined. This module
also provides input for the image processing
modules. The elements of translation and rota-
tion matrices that are used in the image process-
ing modules are computed in the measurement
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estimator module. Fig. 1 shows how the actions change the velocity and direction of the car. In
summary, the measurement estimator module acts as the following function:

pt+1,vt+1,∆pt,∆θt = fm(pt,vt,at), (1)
where the components are shown in Fig. 1.

2.1.2 Input image processing modules (IIPs)

The goal of designing our model is to make the task of prediction as easy as possible for the prediction
module. Therefore we want the frame to be predicted next, it+1, to have minimal changes compared
to the last input frame, it, i.e. we just want the moving objects in the next frame change their positions
in the image and all other objects remain the same. To do so we use two image processing modules at
the input of the prediction module. These two modules transform it and it+1 based on ∆θt and ∆pt
from the measurement estimator modules.

The first component, IIP1, takes ∆θt and ∆pt and image at time t, it, and change the position of the
ego car in the image accordingly, as if we imagined that action at has been applied to the car. We
denote the output by iat . The other component, IIP2, takes ∆θt and ∆pt and the next frame and
remove the ego motion from the image, as if we are seeing this frame from the point of view of the
car in it. This module changes the position of the ego-car and all other objects in the image according
to the action. We denote the output of IIP2 by iat+1

. Note that by these two transformations the
positions of the ego car as well as other fixed objects in the image remain the same in both iat and
iat+1 . Only moving objects change their position in these two images.

2.1.3 Prediction module

Prediction module is the only component of our model that is trainable. The task that is learned
by this module is predicting iat+1

. This task is much easier for the prediction module, compared
to predicting it+1, since the geometry of the image remains the same as its input. Therefore the
prediction module only needs to learn the dynamics of the moving objects in the image. No matter
how harsh or mild the the driver’s actions are, the location of the fixed items remain the same as the
input image, iat . This is especially important for the case of self-driving cars where the prediction
model should reliably predict the future images online. The prediction module only needs to predict
the location of the dynamic objects and rotations and translations do not need to be learned during
the training of the model.

We solve the prediction problem in the framework of VAEs. Since this is a conditional prediction
task we use the conditional VAE model (CVAE) [14]. A common problem with vanilla CVAE model
is that it does not learn the distribution of its input and therefore is prone to overfitting. Therefore,
we use the special case of CVAEs, called bottleneck conditional density estimation (BCDE) [13],
in which the prior is also conditioned on the input. In our case this input is the set of previous
observations.

We are interested in the conditional log-likelihood log p(ot+1|o1:t,at). Since the image and mea-
surements in ot+1 are conditionally independent we can write the log-likelihood in the following
form:

log p(ot+1|o1:t,at) = log p(it+1|o1:t,at) + log p(pt+1,vt+1|o1:t,at), (2)
The second likelihood in Eq. 2 can be removed from our calculations since according to Eq. 1:

p(pt+1,vt+1|o1:t,at) = p(pt+1,vt+1|pt,vt,at) = δ(fm(pt,vt,at)) (3)
where δ(.) is the Dirac delta function.

Since both iat and iat+1 are one-to-one functions of the action at (given it and it+1), we can re-write
the first term of Eq. 2 as log p(iat+1 |o1:t, iat) . We consider the graphical model in Fig. 2 at each
time step for this prediction task. We would like to maximize the evidence low-bound (ELBO) of the
conditional likelihood log p(iat+1 |o1:t, iat).

According to our definition of the approximating variational distribution in the graphical model, and
also considering zt as an information bottleneck between the conditions, o1:t and iat

, and the target,
iat+1

, the ELBO will have the following form:
log p(iat+1

|o1:t, iat
) ≥Eq(zt|o1:t,iat ,iat+1

)[log p(iat+1
|zt)]

−KL
(
q(zt|o1:t, iat

, iat+1
)||p(zt|o1:t, iat

)
)

(4)
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Figure 2: Graphical model of the prediction module. Gray circles are observed variables. (a) the generative
links, p(.). (b) Variational approximation links, q(.).

We aim to maximize this ELBO. We implement each of the conditional probability distributions in
Eq. 4 using a neural network and denote the parameters of p(.) and q(.) by ψ and φ, respectively.
Authors in [7] also suggested a CVAE-based model for prediction. However, in their model the prior
is not conditioned on the previous observations. Therefore, samples from the prior at the test time
can be independent of the previous seen images. This can potentially hurt the performance of the
prediction especially when the prediction horizon is large.

2.1.4 Output image processing module (OIP)

The OIP module takes the output of the prediction module and the action at time t and changes the
image such that the ego car goes to the center of the image again. In fact, OIP module’s function is
the inverse of IIP2’s. The output should be ideally the same as it+1. This module is necessary for
multi-step prediction where the current prediction is fed to the model as the input for the next step
prediction.

Fig. 3 shows the components of the model and how they are connected to each other. We use
convolutional layers for encoding and decoding the images and fully-connected layers for encoding
the position and velocity.

2.2 Practical considerations

The first term in the ELBO in Eq. 4, can be interpreted as a reconstruction loss in the pixel space.
For the reconstruction loss we compute a weighted sum of mean-squared error (MSE) between
prediction and target. For the second term, we consider a Gaussian distribution for the conditional
prior. However, since the observations are highly dynamic we set the variance of the distribution
to zero, we split the latent code into two parts and for one part set the variance of the distribution
to zero. The encoder of p(.) and q(.) distributions share parameters for the part with zero variance.
For the part with non-zero variance, we try to match the output distributions by minimizing the
KL-divergence according to Eq. 4 .At the test time, sampling from the prior will generate new
scenarios.

Action-based prediction model

�pt,�✓t

pt,vt

p̂t+1, v̂t+1

o1:t

ôt+1

at

Fed-back to the model for future predictions 

IIP2

IIP1 Prediction module OIP

it

it+1

iat

iat+1

îat+1
ît+1

Measurements 
estimator

o1:t

Figure 3: The prediction model with all of its components. For multi-step prediction the output of the model at
each time step is fed-back to the model for prediction of the next steps. The dashed green links and IIP2 block
only exist at the training time and they are disconnected at the test (inference) time.
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Figure 4: The components of prediction module. The top part of the encoder (green) is common between p(.)
and q(.). The yellow block of the bottom part belongs to p(.) and the red block belongs to q(.). Some links are
shown by double lines for better visualization.

The training objective for the model is to minimize the following expression:

Lt = Lrec.
t + LKL

t =‖ iat+1
− îat+1

‖2 +KL
(
qφ(zt|o1:t, iat

, iat+1
)||pψ(zt|o1:t, iat

)
)

For a multi-step prediction task with horizon k a summation over Lt is minimized:

min
ψ,φ

k−1∑
j=0

Lrec.
t+j + LKL

t+j (5)

3 Experiments
In this section we compare the prediction capacity of our model with the forward-model in MPUR
[7]. We use the Next Generation Simulation program’s Interstate 80(NGSIM I-80) dataset. The
dataset consists of 45 minutes of recordings (3 batches of 15 minutes recordings) from traffic cameras
mounted over a stretch of highway. Behaviour of drivers are complex and difficult to predict. We
follow the same preprocessing proposed in [7] to make the datasets. The images in this dataset are
117 × 24 with three channels (RGB). The ego-car is in the center of the blue channel. Other cars
are in the green channel, which can be interpreted as the OGM. The red channel has the road map
information, i.e. lines.

Prediction with regular actions: For actions that are high probable according to the training
distribution, we train each model using one batch of 15 minutes recording and test it on the actions of
the other two batches. Therefore the test actions are going to be within the same range of training
actions. In this case, we have the ground truth for prediction. Therefore we can compute the loss
based on mean square error (mse) for different prediction horizons k, averaged over k. Results are
reported in table 1. Fig. 6 shows a sequence of predictions for different models. As we can see PI
and FM-MPUR perform closely in the visual sense, as well.

Method k = 1 k = 5 k = 10 k = 20

FM-MPUR 3.41± 0.87 4.72± 0.82 5.24± 1.1 7.82± 1.4
PI 3.22± 0.59 4.58± 0.88 5.66± 1.04 6.04± 1.34

Table 1: Mean squared error of predictions
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Figure 5: Distribution of actions in the training
dataset.

Prediction for low-probable actions: For the low-
probable actions, we use the trained models with each
of the batches of 15 minutes recordings and apply
actions that are rarely seen in the training set but are
still in the dynamic range of vehicles. We use the
distribution shown in Fig. 5 to sample these actions.

Defining a quantitative evaluation metric for the per-
formance of the models on these actions is not straight-
forward. Therefore, we apply such actions to 25 randomly selected sequences of the test set. Given
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Figure 6: A sequence of predictions by different models. First row is the input sequence. Second row is the
target sequence. Row three and four are the predictions of PI and FM-MPUR. models, respectively. For the
FM-MPUR we used 20 input frames but only the last 10 frames are shown in the first row.

Figure 7: Effect of constantly applying low-probable actions on the prediction of PI (top row) and FM-MPUR
models (bottom row).
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an input sequence, we predict k = 20 images and count the number of visually corrupted images and
call them invalid predictions. In table 2 we show the percentage of invalid predictions for the first
k = {1, 2, 5, 10, 20} predictions (over k × 25 possible images). It shows that our model outperforms
FM-MPUR significantly for this task. This is due to the fact that the prediction task for the prediction
module in our model is much easier than the one that other module should handle.

Fig. 7 shows the result of applying one low-probable action to the ego-car. The input sequence is
the same as Fig. 6. We apply at = [−35, 0] for 20 consecutive steps, which is a very low-probable
action according to Fig. 5. This is equivalent to a hard break in the middle of the road. As we can see
our model can predict almost perfectly, while the prediction of FM-MPUR model breaks after a few
prediction. Compared to the predictions that correspond the original actions in Fig. 6, we can see that
the ego-car gets closer to the car behind it and the car in front of it gets farther away.

Method k = 1 k = 5 k = 10 k = 20

FM-MPUR 4 12 20.4 28.8
PI 0 2.8 6.2 11.4

Table 2: Percentage of invalid predicted observations

4 Conclusion

We proposed a model for action-based prediction. Our model, compared to its rivals, has a higher
capacity for predicting out-of-distribution actions, i.e. actions that are not seen at the training time.
Therefore is can handle extreme scenarios better. An immediate direction for extending this work is
training a policy network on top of the learned prediction model that can generate actions based on
the observations. Since the prediction can perform well under applying extreme actions, we expect
the policy network to produce safer and more reliable actions.
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